Geochemistry of hot-springs at the SuSu Knolls hydrothermal field, Eastern Manus Basin: Advanced argillic alteration and vent fluid acidity

Jeffrey S. Seewald a,⇑, Eoghan P. Reeves a,⇑, Wolfgang Bach b, Peter J. Saccocia c, Paul R. Craddock a,⇑, Emily Walsh c, Wayne C. Shanks III d, Sean P. Sylva a, Thomas Pichler b, Martin Rosner e

a Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA
b Geoscience Department, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
c Department of Geological Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
d U.S. Geological Survey, 973 Denver Federal Center, Denver, CO 80225, USA
e Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstrasse 74-100, 12249 Berlin, Germany

Received 29 March 2018; accepted in revised form 27 March 2019; Available online 5 April 2019

Abstract

SuSu Knolls is an area of ongoing magmatic activity and recent volcanism located in the back-arc spreading environment of the Manus Basin in the Bismarck Sea, Papua New Guinea. In 2006, hydrothermal fluids were collected from three areas of submarine hot-spring venting and analyzed for the chemical and isotopic composition of major and trace species. Fluids were characterized by temperatures that varied from 226–325 °C, and formed grey to black smoke as they mixed with bottom seawater. The compositions of seawater derived vent fluids are regulated by the relative contributions of fluid-rock and fluid-sediment interaction, phase separation, and the addition of volatiles from magmatic degassing. In addition to phase separation, leaching of Cl from felsic rocks that compose the lithosphere in back-arc environments may produce Cl concentrations in excess of seawater values.

The measured pH of SuSu Knolls smoker fluids varied from 1.5–3.7, a range that includes values substantially more acidic than typically observed in fluids at mid-ocean ridge spreading centers. Late stage addition of magmatic volatiles in the shallow seafloor is directly responsible for the most acidic fluids (pH values below 2). In contrast, the acidity of vent fluids characterized by pH values between 2 and 3 is not the direct result of the direct addition of magmatically-derived acidic species. Instead, the pH of these fluids likely reflects reaction with rocks that were previously altered by highly acidic magmatic fluids to an advanced argillic alteration assemblage containing quartz-illite-pyrophyllite-anhydrite ± alunite in hydrothermal upflow zones. Fluids that do not react with advanced argillic alteration assemblages during upflow have measured pH values between 3 and 4.

© 2019 Elsevier Ltd. All rights reserved.

Keywords: Back-arc basin; Hydrothermal systems; Magmatic volatiles; Fluid-rock interaction; Acid-sulfate fluids; Manus Basin; SuSu; Knolls

⇑ Corresponding author.
E-mail address: jseewald@whoi.edu (J.S. Seewald).

1 Present address: Department of Earth Science and K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen N-5020, Norway.
2 Present address: Schlumberger-Doll Research Center, Cambridge, MA 02139, USA.

https://doi.org/10.1016/j.gca.2019.03.034
0016-7037/© 2019 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Hydrothermal fluids in back-arc environments are characterized by a broad range of compositions that reflect substantial variability in chemical and physical conditions during fluid-rock interaction within the oceanic lithosphere (Fouquet et al., 1993; Ishibashi et al., 1996; Gamo et al., 1997; Takai et al., 2008; Mottl et al., 2011; Reeves et al., 2011; Kawagucci et al., 2013; Seewald et al., 2015). A significant portion of this variability can be attributed to deep-seated processes involving the influence of the subducted slab on the composition of lithospheric rocks and shallow magmas. Water-rich fluids that can exsolve from crystallizing magmas at shallow levels in the crust can play a fundamental role in regulating the composition of back-arc hydrothermal fluids because they may represent a direct source of metals and/or acidity (Hedenquist and Lowenstern, 1994; Yang and Scott, 1996, 2002, 2006).

Relative to magmatic volatiles entrained in mid-ocean ridge hydrothermal fluids that are dominated by CO₂, magmatic volatiles in back-arc environments may be substantially more acidic due to high levels of SO₂, HCl, and HF in addition to CO₂ and H₂O. The presence of SO₂ is particularly significant because its disproportionation upon cooling and mixing rapidly produces sulfuric acid (H₂SO₄). Unlike CO₂, which is a relatively weak acid, especially at elevated temperatures, H₂SO₄ and HCl are stronger acids that can significantly decrease the pH of hydrothermal fluids venting at the seafloor. Because fluid-mineral interaction during the transport of hydrothermal fluids in subsurface environments is strongly dependent on pH, highly acidic magmatic volatiles will influence the alteration of the back-arc oceanic lithosphere and the aqueous mobility of sulfide forming metals.

Two distinct styles of hydrothermal venting have been documented in back-arc environments (Fig. 1; de Ronde and Stucker, 2015; Seewald et al., 2015). One is broadly similar to hydrothermal circulation at mid-ocean ridges and involves the convective circulation of seawater-derived hydrothermal fluids through the lithosphere where fluid-rock interaction and magmatic degassing modifies the chemistry of seawater to produce acidic, reducing, and metal-rich fluids that vent at the seafloor (Fouquet et al., 1993; Takai et al., 2008; Mottl et al., 2011; Reeves et al., 2011). When hydrothermal fluids are transition metal-rich, mixing with seawater upon venting to the water column induces rapid precipitation of minerals and the formation of ‘smoker-type’ vent fluids that form massive sulfide deposits.

The second style of venting involves the direct degassing of magmatic volatiles from a magma chamber/intrusion. The volatiles mix with unmodified seawater in subsurface environments and are subsequently released at the seafloor (Gamo et al., 1997; Butterfield et al., 2011; Seewald et al., 2015). The fluids are often referred to as ‘acid-sulfate’ fluids owing to substantially higher levels of acidity relative to smoker fluids and large enrichments in aqueous ΣSO₄ (ΣSO₄ = H₂SO₄ + HSO₄⁻ + SO₄²⁻). In contrast to processes responsible for the formation of smoker fluids, venting of acid-sulfate fluids does not appear to involve convective circulation of seawater (Seewald et al., 2015) and is analogous to sub-aerial fumarolic discharge. Acid-sulfate hot-springs typically contain high concentrations of elemental sulfur that results in the venting of milky white fluids at the seafloor.

The influence of magmatic degassing in back-arc environments extends beyond the direct contribution of magmatically-derived fluids to the chemistry of circulating smoker fluids or direct emanation into the water column. Volcanic host rocks at and below the seafloor have are extensively altered by acid-sulfate fluids producing a mineral assemblage containing quartz-illite-pyrophyllite-anhydrite ± alunite (Gamo et al., 2001; Roberts et al., 2003; Lackschewitz et al., 2004) that is compositionally distinct from assemblages observed in mid-ocean ridge settings (e.g. Alt, 1995). Temporal changes in subsurface hydrology and the extent of magmatic volatile degassing may result in later interaction of these assemblages with less acidic seawater-derived hydrothermal fluids that contain relatively low levels of acidic magmatic volatiles. Although the effects of magmatic volatiles on hydrothermal fluid chemistry are now better understood (Gamo et al., 1997; Reeves et al., 2011; Butterfield et al., 2011; Seewald et al., 2015), the interactions of pre-existing acid-sulfate mineral assemblages with less acidic smoker-type fluids are not, but could have a profound effect on fluid composition.

Field study of hydrothermal activity at SuSu Knolls in 2006 revealed an area of ongoing magmatic activity and recent volcanism located in the back-arc environment of the Manus Basin in the Bismarck Sea, Papua New Guinea (Fig. 2). Hydrothermal activity at SuSu Knolls is associated with three adjacent neovolcanic domes known as Suzette, North Su, and South Su. Suzette, the northernmost edifice, hosts an active hydrothermal field along with a deposit of sulfide mineralization (“Solwara 1”) that is the subject of commercial mining interest (Boschen et al., 2013). In 2006, fumarolic venting of magmatically-derived acid-sulfate fluids on the flanks of the North Su dome was observed within a few hundred meters of smoker-type vent fluids (Seewald et al., 2015; Thal et al., 2016). The close proximity of these two styles of hydrothermal venting provides a rare opportunity to assess the influence of magmatic volatiles and previously formed acid-sulfate mineral assemblages on the composition of smoker fluids formed by the convective circulation of seawater.

Here we report data for the chemical and isotopic composition of smoker-type hydrothermal fluids collected contemporaneously in 2006 with previously reported acid-sulfate fluids (Seewald et al., 2015) from the SuSu Knolls vent field during R/V Meteor cruise MGLN06MV. Magmatic volatiles that may be involved with the formation of smoker fluids at North Su are likely derived from the same source as the magmatic volatiles responsible for the formation of nearby acid-sulfate vent fluids. Because the compositions of the magmatic volatiles have been determined by direct sampling of the North Su acid-sulfate fluids (Seewald et al., 2015), the contribution of magmatic volatiles to the chemistry of smoker fluids prior to mixing and
subsequent fluid-rock interaction can be constrained. Compositional information presented here is used in conjunction with geochemical models to reconstruct processes responsible for the formation and evolution of smoker fluids in a back-arc environment. Our results suggest that acidity of many smoker-type fluids may be regulated by equilibration with minerals formed during earlier periods of acid-sulfate alteration in hydrothermal upflow zones.

2. GEOLOGIC SETTING

The Manus Basin (Fig. 2), located in the northeastern Bismarck Sea, is a young (ca. 3.5 Ma) back-arc basin that is opening rapidly at full rates up to 137 mm/y (Tregoning, 2002). It is bordered to the north by the inactive Manus Trench and to the south by the active New Britain Trench (Taylor, 1979; Taylor et al., 1994; Lee and Ruellan, 2006). Volcanism associated with basin extension occurs along a series of spreading centers and rifts between the Willaumez, Djual, and Weitin transform faults (Taylor, 1979; Taylor et al., 1994; Martinez and Taylor, 1996). Fully-developed spreading in the center of the basin occurs along the 120 km-long Manus Spreading Center, which

hosts the unsedimented Vienna Woods hydrothermal field in predominantly MORB-like crust (Both et al., 1986; Tufar, 1990; Lisitsyn et al., 1993; Reeves et al., 2011). In contrast, the Eastern Manus Basin, located between the Djaul and Weitin transform faults (Fig. 2), is an extensional transform zone within much older Eocene-Oligocene island-arc crust that likely formed during previous southward subduction along the Manus Trench (Binns and Scott, 1993; Binns et al., 2007). Volcanism associated with the incipient rifting of the pre-existing intermediate/felsic crust has produced a complex series of en echelon neovolcanic seafloor ridges and domes collectively known as the Eastern Manus volcanic zone (Fig. 2). Volcanic rocks in the Eastern Manus Volcanic Zone vary from basalt to rhyodacite (Binns and Scott, 1993; Kamensky et al., 2001; Sinton et al., 2003) and possess isotopic and major and trace element characteristics that resemble subaerial volcanoes of the New Britain Arc, indicating strong arc affinities (Sinton et al., 2003; Pearce and Stern, 2006).

During the last three decades, several areas of hydrothermal activity have been discovered in the Eastern Manus volcanic zone (Fig. 2), including the DESMOS caldera, the SuSu Knolls area, and the PACMANUS and
Northeast Pual sites located on Pual Ridge (Binns and Scott, 1993; Gamo et al., 1993, 1997, 2006; Auzende et al., 1997, 2000; Binns et al., 1997; Gena et al., 2001, 2006; Moss and Scott, 2001; Tivey et al., 2006; Hrischeva et al., 2007; Craddock et al., 2010; Reeves et al., 2011; Seewald et al., 2015; Thal et al., 2014, 2016).

The hydrothermally-active neovolcanic edifices that constitute Suzette, North Su and South Su (Fig. 2) overlie the andesitic Tumai Ridge at water depths between 1150 and 1570 m (Binns et al., 1997; Auzende et al., 2000; Moss and Scott, 2001; Tivey et al., 2006; Hrischeva et al., 2007; Seewald et al., 2015). The North Su and South Su volcanic structures are composed of abundant porphyritic andesite to dacite flows showing variable advanced argillic alteration (i.e., quartz–pyrophyllite–illite ± alunite and native sulfur) by acid-sulfate fluids (Binns et al., 1997; Yeats et al., 2014; Tivey et al., 2006). The entire series of SuSu Knolls edifices is covered with a sediment apron of variable thickness up to several meters, consisting of layered, dark, and locally sulfidic sandy sediment that is most likely a mixture of volcanoclastic and pelagic/hemipelagic detritus (Hrischeva et al., 2007; Yeats et al., 2014).

The summit of the Suzette hydrothermal field (Fig. 2) is characterized by large expanses of both relict and scattered active sulfide chimneys that, in many instances, are buried within thick sediment. Hydrothermal activity is distributed over broad sections of the Suzette mound. Five vent fluids with temperatures from 226–303 °C were sampled from sulfide-rich chimney edifices. A sixth fluid (SZ5) with a temperature of 249 °C was sampled from a cracked pavement-like sulfide structure.

Hydrothermal fluids with temperatures varying from 299–325 °C were collected at the summit of the North Su dome from three separate massive sulfide structures up to 11 m tall within a large complex of smoker chimneys. An additional smoker-type fluid (NS4), which was gray in appearance and had a temperature of 241 °C, was collected on the northwest flank of the dome. The North Su dome flanks also hosted numerous areas venting sulfur-rich milky white fluids with temperatures of 48–215 °C from talus piles consisting of extensively altered volcanic clasts and, in some cases, from areas with minor hydrothermal sediment cover (Seewald et al., 2015). Flows and flanges of native sulfur were common in the vicinity of the white fluids. In areas of more substantial hydrothermal sediment cover on the dome flanks, molten sulfur at temperatures of 272–284 °C was observed less than 0.5 m beneath the sediment-water interface. Several large lava spines protruded up to 15 m from the hydrothermal detritus, with diffuse fluid venting observed at their base. It has been suggested the lava spines reflect the gradual extrusion of highly viscous, crystal-rich andesitic magma into water-saturated, clast-dominated sediments on the slopes of the dome (Thal et al., 2016).

Hydrothermal activity at South Su was more limited. High-temperature fluids with maximum temperatures of 271 and 288 °C were collected from two chimneys that lacked discrete orifices, but instead emitted fluid diffusely at the top through highly porous material.
3. METHODS

Vent fluids were collected using isobaric gas-tight fluid samplers (Seewald et al., 2002) and syringe style ‘major’ samplers (Von Damm et al., 1985a) deployed from the ROV Jason II. Typically, two separate samples were collected from each vent using the gas-tight samplers (IGT-prefix in Table S1) and in most cases a third sample was collected using the ‘major’ sampler (M-prefix in Table S1). Vent fluid temperature was monitored continuously during fluid sampling using a thermocouple attached to the end of the sampler inlet snorkel. The reported temperatures (Table 1) represent maximum values recorded for each vent with an estimated uncertainty of ±2 °C.

Fluid samples were processed within 24 h of recovery on the ship. Shipboard analyses included pH measured at room temperature (pH25) using a Ag/AgCl combination reference electrode, dissolved H2 and CH4 by gas chromatography with thermal conductivity detection following headspace extraction, and total aqueous sulfide (ΣH2S = H2S + HS− + S2−) following aqueous precipitation as Ag2S for subsequent gravimetric determination in a shore-based laboratory. For each sample, several aliquots were stored in acid-cleaned high-density polyethylene bottles for shore-based analysis. Anions (Cl−, ΣSO4, Br, F) and cations (Na, K, Ca, Mg) were analyzed by ion chromatography. An aliquot of fluid was acidified with analytical-grade Optima™ HCl prior to storage for trace metal analysis by inductively-coupled plasma mass spectrometry (ICP-MS) and inductively-coupled plasma atomic emission spectroscopy (ICP-AES). A subsample of the acidified aliquot was diluted 100-fold at sea for measurement of aqueous SiO2 by ICP-AES. Samples of high temperature vent fluids typically contain transition metal-rich precipitates due to cooling and mixing with alkaline seawater during sampling. These precipitates were collected on 0.22 µm nylon filters and analyzed by ICP-MS after dissolution, allowing reconstruction of fluid composition prior to metal precipitation. Several aliquots of fluid were stored in 30 mL serum vials with butyl rubber stoppers for shore-based analysis and chemical and isotopic analysis of total dissolved carbonate (ΣCO2 = H2CO3 + HCO−3 + CO2−3), CH4, and other short-chain hydrocarbons including ethane and propane. The butyl rubber stoppers were pre-treated by boiling in 1 M NaOH to remove hydrocarbon contaminants present in the rubber. The concentrations of CO2 were determined onshore after acidification of fluids with 25 wt.% phosphoric acid by injecting aliquots of headspace gas directly onto a gas chromatograph with a Porapak-Q packed column and a thermal conductivity detector. These data were corrected to account for CO2 partitioning between the headspace and fluid phases within an individual serum vial. Concentrations of low molecular weight hydrocarbons were determined by purge-and-trap gas chromatography using a Porapak-Q packed column and a flame ionization detector. Fluid aliquots were flame-sealed in glass ampoules for stable hydrogen (δD(H2O) and oxygen (δ18O(H2O)) isotope analysis. Concentrations are expressed in units of mmol/L fluid for aqueous species analyzed at sea or mmol/kg fluid for species analyzed in shore-based laboratories. Estimates of overall analytical uncertainties (2s) are ±10% for H2, CH4, C2H6, ΣH2S, Sr, Li, Rh, Cs, Ba, Fe, and Al concentrations, ±5% for CO2, Mn, Br, and F concentrations, ±3% for Na, Mg, Cl, Ca, K, and SO4 concentrations, ±2% for SiO2 concentrations, and ±0.02 units for pH25.

The stable carbon and hydrogen isotope compositions of ΣCO2 and CH4 were analyzed by isotope ratio monitoring - gas chromatography mass spectrometry (irm-GCMS) using a Finnigan DeltaPlus mass spectrometer interfaced to an Agilent 6890 gas chromatograph through a Finnigan Gas Chromatograph Combustion Interface III combustion interface held at 950 °C with a constant oxygen trickle. The pooled standard deviation (2s) for both δ13C CO2 and δ13C CH4 values is 0.6‰. The 34S content of aqueous ΣH2S and ΣSO4 were determined following precipitation as Ag2S and BaSO4, respectively, using an automated elemental analyzer interfaced with an isotope ratio mass spectrometer. Analytical uncertainty for δ34S values was ±0.3‰ (2s). Oxygen isotope compositions of vent fluid H2O were analyzed using an automated CO2 equilibration device on a VG Optima mass spectrometer. Hydrogen isotope compositions of vent fluid H2O were analyzed as H2 on a Finnigan MAT 252 mass spectrometer using the Zn reduction technique (Kendall and Coplen, 1985) to prepare H2 following salt removal by vacuum distillation. Analytical uncertainty (2s) for δ13H2O and δ18O H2O values were estimated to be 3‰ and 0.2‰, respectively. 87Sr/86Sr values were determined for a subset of samples on a Finnigan MAT 261 thermal ionization mass spectrometer using static multi-collection (additional details in Eickmann et al., 2009). Analytical uncertainty for 87Sr/86Sr values is estimated at 0.00007 (2s) based on three individually processed aliquots of IAPSO reference seawater. With the exception of 87Sr/86Sr, all stable isotope data are reported using standard delta notation. For the isotope A of interest, δA is defined by the expression:

\[\delta A (\text{‰}) = \frac{R_A - R_{STD}}{R_{STD}} \times 1000 \]

where RS and RSTD are the isotope ratios of the sample and standard, respectively. δ13C CO2 and δ34S SO4 are expressed relative to the V-PDB and V-CDT scales, respectively, whereas δ18O H2O and δD H2O values are both expressed relative to the V-SMOW scale.

4. RESULTS

The overall composition of the smoker-type fluids presented here is in many ways similar to seawater-derived vent fluids from other back-arc and mid-ocean ridge environments (Fouquet et al., 1993; German and Seyfried, 2014; Reeves et al., 2011; Takai et al., 2008; Von Damm, 1995). Such fluids are typically characterized by near-zero Mg concentrations due to extensive fluid-rock interaction in high temperature reaction zones (Seyfried, 1987; Von Damm et al., 1985a), and are consistent with the near-zero Mg concentrations observed in most of the smoker fluids from SuSu
Knolls. Accordingly, it is assumed that measured non-zero Mg concentrations in sampled fluids reflect mixing of a zero-Mg endmember hydrothermal fluid with seawater prior to, or during, sampling in near seafloor environments. Zero-Mg samples are never collected, however, owing to the dead volume of samplers that is prefilled with bottom seawater. In some cases, inadvertent entrainment of ambient bottom seawater during sampling also occurs. The compositions of Mg-free endmember fluids (Table 1) were calculated by assuming conservative mixing and extrapolating the measured concentrations of a given species (Table S1) to a zero-Mg value using a least squares linear regression forced through seawater composition. Strontium isotope endmember values were calculated similarly by extrapolating the measured molar \(^{87}\text{Sr}/^{86}\text{Sr} \) and Mg/Sr ratios to zero-Mg using a least squares linear regression forced through seawater composition (Albarède et al., 1981).

Measured Mg concentrations for the smoker-type fluids are, in general, greater than the 1.6 mmol/kg concentration expected for the 4 ml dead-volume of the isobaric gas-tight samplers (Seewald et al., 2002) and 0.27 mmol/kg expected for the 3.8 ml dead volume of the ‘major’ samplers (Von Damm et al., 1985a). Although this could reflect entrainment of ambient seawater during collection of the samples, we believe this is unlikely based on past experience at other vent sites (c.f. Cruse et al., 2008; Cruse and Seewald, 2010; Mottl et al., 2011). Moreover, replicate samples from several vents give nearly identical Mg concentrations that are above the dead volume value (Table S1), an unlikely consequence of a random process such as seawater entrainment. A more likely explanation for reproducible Mg concentrations that are above the dead volume value is that the fluids contained non-zero Mg concentrations when they exited the seafloor due to subsurface mixing with seawater. A similar phenomenon has been observed in focused-flow fluids from the nearby PACMANUS vent field (Reeves et al., 2011).

4.1. Major Species and pH

Endmember Cl concentrations were enriched in all smoker-type fluids relative to seawater (540 mmol/kg) and showed a high degree of variability within a given vent field (Table 1). For example, endmember Cl concentration varied from 620–712 mmol/kg and 550–739 mmol/kg at Suzette and North Su, respectively. Vent fluids at South Su were characterized by endmember concentrations of 609 and 620 mmol/kg, values that are within the range observed at the other vent areas. Replicate fluid samples from the NS6 vent at North Su showed variable concentrations that varied from 682–739 mmol/kg. This fluid had a measured temperature of 325 °C which is very close to the two-phase boundary for seawater at 329 °C for a seafloor pressure of 118 bar (Bischoff and Rosenbauer, 1985). The fluid also displayed a flame-like flashing phenomenon upon exiting the chimney orifice, consistent with phase-separation. Accordingly, variations in the measured Cl concentrations of the NS6 fluid likely reflect differences in the relative proportion of brine and vapor collected during each sampling event due to active phase separation at the seafloor.

Because Na is the predominant cation in seawater, charge balance constraints require that endmember Na concentrations are closely linked to variations in Cl. Accordingly, except for fluid NS5 with a Na concentration of 454 mmol/kg, all smoker-type fluids are enriched relative to seawater (462 mmol/kg) with concentrations varying from 492–598 mmol/kg. Na/Cl ratios (Table 1), however, reveal values that are consistently below the seawater ratio of 0.86, indicating that Cl is more enriched than Na.

Endmember K concentrations vary from 48–65 mmol/kg and are substantially enriched relative to seawater abundance (9.9 mmol/kg). For a given vent field, the highest K concentrations are associated with the most Cl-rich fluids (Table 1). Except for fluid NS4, endmember Ca concentrations are also enriched relative to seawater, but are characterized by a broader range of values from 21–51 mmol/kg. Relative to the other vents, the endmember Ca concentration of 3.6 mmol/kg at NS4 is substantially depleted and atypical for ridge-crest hydrothermal fluids that, in general, are enriched in Ca relative to seawater (Von Damm, 1995; German and Seyfried, 2014).

In contrast to the major cations, aqueous concentrations of SiO₂ do not vary systematically with Cl. Endmember SiO₂ concentrations in most fluids from each vent field show a similar range, varying from 13.3–17.8 mmol/kg. The endmember NS4 fluid, however, contains 29.2 mmol/kg SiO₂, substantially higher than the other vent fluids at SuSu Knolls (Table 1, Fig. 3).

High-temperature endmember ridge-crest vent fluids typically contain near-zero concentrations of aqueous SO₄ similar to Mg (Von Damm et al., 1985a; Seyfried, 1987). The abundance of aqueous SO₄ in the SuSu Knolls fluids provides additional evidence for endmember fluids mixing with normal seawater in subsurface cavities or fractures. If hydrothermal fluids contain zero Mg and SO₄, conservative mixing with ambient seawater should produce a linear correlation between Mg and SO₄ that defines a line from the origin to seawater composition. Examination of Fig. 4, however, indicates that except for NS4, measured SO₄ concentrations are generally at or below values expected for conservative mixing. Extrapolation of the Mg-SO₄ trendlines to zero Mg yields negative SO₄ concentrations that are not meaningful.

The observed SO₄ depletions are consistent with subsurface SO₄ removal by anhydrite (CaSO₄) precipitation due to its low retrograde solubility at elevated temperatures (Bischoff and Seyfried, 1978; Holland and Malinin, 1979). Because anhydrite precipitation removes one mole of Ca for each mole of SO₄, endmember Ca concentrations calculated by extrapolation to zero Mg (Table 1) may systematically underestimate actual endmember values. However, the maximum observed vent fluid Mg concentration of 7.9 mmol/kg at vent SZ4 corresponds to a SO₄ depletion of only 2.8 mmol/kg, suggesting the endmember Ca concentrations are affected to a relatively minor degree.

An endmember ΣSO₄ concentration of 16.4 mmol/kg at the NS4 vent suggests that ΣSO₄ did not behave conservatively at this site during subsurface seawater mixing or the endmember fluid did not contain a near-zero ΣSO₄ concentration. The elevated ΣSO₄ abundance in conjunction with
Table 1
Endmember concentrations* of aqueous species in vent fluids from SuSu Knolls vent fields.

Field	Vent	T_{max} °C	pH_{min}	Na mmol/kg	K mmol/kg	Li mmol/kg	Rb mmol/kg	Cs mmol/kg	Sr mmol/kg	b⁸⁷Sr/86^{SR}Fe	Fe mmol/kg	Mn mmol/kg	Al mmol/kg	Cl mmol/kg	Br mmol/kg	H₂S ppm	C₁CH₄ ‰	C₂H₆ ‰	CO₂ ‰	H₂O ‰	DH₂O ‰	δ¹³CCH₄ ‰	δ¹³CCO₂ ‰	δ¹⁸OH₂O ‰	δD_{H2O} ‰			
Suzette	SZ1	303	3.7	508	48.0	0.73	49	2.2	33.8	0.26	0.70429	0.75	0.272	4	623	0.98	64	14.9	12	1.8	-5.1	528	-29.8	nd	16.3	0.1	0.8	-6
	SZ2	274	3.6	528	49.1	0.80	48	2.5	49.4	0.39	nd	0.78	0.366	5	684	1.1	80	14.0	7.4	1.8	nd	221	-28.6	1.3	21.5	-0.2	1.4	-5
	SZ3	290	3.5	539	49.0	0.81	44	2.5	47.9	0.39	nd	0.88	0.335	5	689	1.1	82	13.9	13	1.9	-5.9	384	-26.8	1.3	17.4	-0.3	0.8	-1
	SZ4	229	3.6	527	54.9	0.77	55	2.6	44.1	0.36	nd	0.52	0.325	1	677	1.0	66	13.7	7.7	1.3	nd	459	-32.0	nd	24.0	-0.9	1.1	1
	SZ5	249	2.2	521	48.6	0.72	48	2.2	26.0	0.24	0.70501	4.3	0.273	18	620	0.95	533	16.1	8.0	5.3	-5.8	564	-31.0	3.1	17.8	-0.3	0.7	-3
	SZ6	226	3.7	550	51.6	0.81	51	2.6	51.2	0.42	0.70501	0.38	0.378	2	712	1.1	86	13.3	37	1.2	nd	107	-28.4	0.65	17.8	0.01	0.7	-2
North Su	NS3	300	3.4	546	65.0	0.86	66	2.9	31.2	0.24	nd	0.73	0.245	10	674	1.1	145	17.8	82	3.4	-6.7	313	nd	2.6	11.9	-0.9	1.0	-1
	NS4	241	1.5	492	49.0	0.71	54	2.5	3.6	0.059	0.70520	4.7	0.359	278	580	0.84	919	29.2	64	11.1	-4.7	853	nd	28.1	-0.9	1.2	-3	
	NS5	299	3.2	454	49.4	0.67	51	2.3	20.6	0.24	nd	0.41	0.474	10	550	0.82	188	17.4	85	6.6	-6.9	639	-34.2	4.8	22.1	-0.3	0.7	-2
	NS6_{high} Cl₁	325	2.8	598	64.9	0.90	64	3.1	37.7	0.43	0.70440	5.8	0.468	8	739	1.1	343	16.5	21	4.3	-6.1	93	nd	7.2	nd	0.9	-2	
	NS6_{low} Cl₁	325	2.8	558	59.2	0.85	61	2.9	34.9	0.40	0.70501	5.8	0.481	6	682	1.0	333	nd										
South Su	SS1	271	2.6	509	48.4	0.63	48	2.3	29.5	0.40	0.70450	2.2	0.558	8	620	0.94	385	15.1	15	6.2	-4.6	24	-19.9	0.070	142	-1.5	0.8	-2
	SS2	288	2.7	498	48.6	0.63	50	2.0	27.7	0.30	nd	2.6	0.490	8	609	0.92	286	15.1	13	8.1	-4.6	24	-19.2	0.003	153	-1.7	0.9	-1
Seawater	3	7.9	462	9.9	0.028	1.3	0.002	10.5	0.091	0.70916	1 x 10⁻⁶	5 x 10⁻⁶	0.03	540	0.81	64	0.13	0	nd	0	nd	0.000	2.3	0.3	-0.17	-0.14		

nd = not determined.

* mM = mmol/L fluid, mm = mmol/kg fluid, μM = μmol/L fluid, μm = μmol/kg fluid, nm = nmol/kg fluid. Tmax = maximum measured vent temperature. pH_{min} = lowest measured (25 °C) pH.

a WOCE data from www.eWOCE.org.
b Spencer et al. (1970).
c Craig (1969).
d Craig and Gordon (1965).
e Redfield and Friedman (1965).
a relatively low endmember Ca abundance (3.6 mmol/kg) suggests that anhydrite dissolution is not the source of the additional R_{SO_4}.

Except for a few samples, measured values of $\delta^{34}\text{SO}_4$ for dissolved SO_4 in the SuSu Knolls samples average 20.3‰, consistently lower than, but close to normal seawater SO_4 ($\delta^{34}\text{SO}_4 = 20.99 \pm 0.08$‰, Rees et al., 1978), suggesting a seawater origin (Table S1). Values of $\delta^{34}\text{SO}_4$ that are slightly less than seawater are likely the result of anhydrite-$\text{SO}_4^{(aq)}$ isotope fractionation during anhydrite precipitation (Thode and Monster, 1965; Van Driessche et al., 2016). Values of $\delta^{34}\text{SO}_4$ significantly lower than 20‰ may indicate oxidation of H_2S which is depleted in ^{34}S relative to SO_4 (Table 1).

Measured pH$_{25\degree C}$ in the vent fluids cannot be extrapolated to zero Mg endmember values because pH is not a conservative property during fluid mixing. Accordingly, the lowest measured pH$_{25\degree C}$ values, which are associated with the lowest Mg fluids for a given vent, are reported in Table 1. Measured pH$_{25\degree C}$ at Suzette varied from 2.3–3.7, while pH$_{25\degree C}$ at North Su and South Su varied from 1.5–3.4 and 2.6–2.7, respectively. In general, the pH$_{25\degree C}$ values are higher than observed for the acid-sulfate fluids at North Su (Seewald et al., 2015).

4.2. Trace elements

The abundances of alkali trace elements Li, Rb, and Cs are substantially enriched in the endmember fluids relative to seawater, varying from 0.63–0.99 mmol/kg, 44–66 µmol/kg, and 2.0–3.1 µmol/kg, respectively. Except for Li, which is slightly lower in the fluids from South Su,
systematic spatial variation between vent fields at SuSu Knolls is not apparent.

In general, the abundance of aqueous Sr tracks with aqueous Ca during hydrothermal alteration of the oceanic crust due to substitution in calcic phases such as anhydrite, plagioclase, and epidote (Berndt et al., 1988). Accordingly, it is not surprising that the Ca-poor fluid at NS4 is characterized by the lowest observed endmember Sr concentration of 0.059 mmol/kg, whereas the other relatively Ca-rich fluids at SuSu knolls show higher concentrations that vary from 0.24–0.43 mmol/kg. The assumption of conservative mixing of seawater and endmember vent fluids may not be appropriate for Sr due to anhydrite precipitation, and calculated endmember concentrations likely underestimate actual values due to Sr co-precipitation.

Endmember fluid $^{87}\text{Sr}/^{86}\text{Sr}$ values ranged from 0.70429–0.70520. These ratios are similar to the $^{87}\text{Sr}/^{86}\text{Sr}$ value of 0.7039 for crustal rocks at SuSu Knolls (Park et al., 2010), but substantially lower than the seawater value of 0.70916.

Endmember aqueous Br concentrations ranged from the near seawater abundance of 0.82 mmol/kg to values of 1.1 mmol/kg, and systematically varied with the concentration of Cl (Table 1). Endmember Br/Cl values were at or slightly above seawater values. Endmember F concentrations were also at or above seawater values of 64 µmol/kg.

Fig. 4. Dissolved concentrations of SO_4, H_2S, and ΣCO_2 versus dissolved Mg in seawater-derived hot-spring fluids from areas of hydrothermal venting at SuSu Knolls. The open star indicates the composition of seawater which was included in the linear regressions indicated by the solid lines.
but showed substantial variability, reaching values as high as 919 μmol/kg in the NS4 fluid.

The smoker fluids at SuSu Knolls are highly enriched in Fe and Mn relative to seawater. Endmember Fe for example, ranged from 2.2–5.8 mmol/kg at North and South Su and, except for the SZ5 fluid that contained 4.3 mmol/kg, from 0.380.8 mmol/kg at Suzette (Table 1, Fig. 3). Endmember Mn abundances at SuSu Knolls show less variability, ranging from 0.316–0.558 mmol/kg at North and South Su and 0.272–0.378 mmol/kg at Suzette. Unlike Fe, aqueous Mn at SZ5 (0.273 mmol/kg) was not enriched relative to the other fluids. Aqueous Al concentrations show similar spatial trends as Fe, with most of the North and South Su fluids containing 6–10 μmol/kg Al, while the majority of Suzette fluids contained 1–5 μmol/kg Al. In contrast, the NS4 and SZ5 fluids were highly enriched in Al with concentrations of 278 and 18 μmol/kg, respectively (Table 1, Fig. 3).

4.3. Dissolved gases

Measurable concentrations of dissolved H₂ attest to the highly reducing nature of the smoker fluids at SuSu Knolls. Endmember concentrations at Suzette and South Su show a similar range of values from 7.4–37 μmol/kg while the North Su fluids contain slightly higher H₂ abundances, with endmember concentrations varying from 21–82 μmol/kg (Table 1).

Dissolved ΣH₂S abundances are similar at North and South Su, varying from 3.4–8.1 mmol/kg in most fluids. The majority of fluids at Suzette contain ΣH₂S abundances between 1.2 and 1.9 mmol/kg. The more acidic fluids from NS4 and SZ5 are enriched in dissolved ΣH₂S relative to the nearby fluids, with ΣH₂S concentrations of 11.1 and 5.3 mmol/kg, respectively (Table 1, Fig. 4). Values of δ¹³S for aqueous ΣH₂S were between −6.9 and −4.6‰ (Table 1).

The abundance of volatile carbon species (ΣCO₂, CH₄, and C₂H₂) shows substantial inter-field differences (Table 1, Fig. 4). Endmember ΣCO₂ concentrations range from 142–153 mmol/kg at South Su, but only 7.2 to 28.1 mmol/kg at North Su and Suzette. The carbon isotopic composition of ΣCO₂ is characterized by a narrow range of endmember δ¹³C values from −1.7 to 0.1‰. Dissolved CH₄ abundances show opposite inter-field trends relative to ΣCO₂, with the South Su fluids containing 24 μmol/kg CH₄, while the North Su and Suzette fluids contain 93–639 μmol/kg. The low CH₄ abundance at South Su is accompanied by a relatively enriched carbon isotope composition of −19.2‰, while the more abundant CH₄ at North Su and Suzette is more depleted with δ¹³C values ranging from −34.2 to −28.4‰. The concentration of C₂H₂ varied from 0.003–4.8 μmol/kg, with the highest concentrations observed in the North Su fluids. Propane (C₃H₁₀) was detected in some of the samples, but at a level too low to quantify. Alkanes with chain lengths longer than propane were below detection.

4.4. Oxygen and hydrogen isotopes

Relative to seawater, the endmember smoker-type fluids are enriched in ¹⁸O, with δ¹⁸O values within the narrow range of 0.7–1.4‰ (Table 1). Endmember δD values of the fluids vary from −6 to 1‰, indicating that within the error of the analysis, the smoker-type fluids are the same or depleted in D relative to seawater.

5. DISCUSSION

Convective circulation of seawater-derived hydrothermal fluids at oceanic spreading centers results in extensive chemical exchange and mineralogical alteration of the lithosphere. Early-stage reactions during seawater recharge involve precipitation of Mg as aluminosilicate minerals and SO₄ as anhydrite (CaSO₄) as fluids penetrate to increasing depths and are progressively heated (Seyfried, 1987). Fluids venting at the seafloor may attain temperatures near 400 °C and are characterized by near-zero concentrations of Mg and SO₄ and substantial enrichments in the abundance of Ca, K, SiO₂, mobile trace elements, H₂S, ΣH₂, ΣCO₂, sulfide forming metals, and acidity relative to seawater (German and Seyfried, 2014). Fluids from back-arc environments are characterized by a broad range of compositions that show significant overlap with fluids from basalt-hosted mid-ocean ridge environments, but in many cases are more acidic and metal-rich (Fouquet et al., 1993; Gamo et al., 1997; Douville et al., 1999a,b; Takai et al., 2008; Mottl et al., 2011; Reeves et al., 2011). It has been postulated that the low pH and high transition metal abundances reflect a contribution of acidic magmatic volatiles to convecting seawater-derived fluids (Gamo et al., 1997; Takai et al., 2008; Mottl et al., 2011; Reeves et al., 2011).

The composition of SuSu Knolls smoker fluids suggests that convective circulation of seawater-derived fluids and water-rock reaction with the igneous crust can account for their formation (Fig. 1). For example, endmember smoker fluids contain near-zero concentrations of Mg and SO₄, are highly reducing, acidic, and metal- and sulfide-rich. Ratios of Na/Cl equal to or less than seawater values and substantial enrichment of Ca in the SuSu Knolls fluids are similar to observations from basalt-hosted systems.

In contrast to Na, the abundance of other alkalis (K, Rb, Cs, and Li) show large enrichments in the SuSu Knolls Smoker fluids relative to seawater. Because K, Rb, Cs, and Li readily partition into the aqueous phase during fluid-rock interaction at high temperatures, their aqueous concentrations in ridge-crest hydrothermal fluids typically reflects their abundance in unaltered oceanic lithosphere (Seyfried et al., 1984; Von Damm, 1995; Mottl et al., 2011; Reeves et al., 2011). Accordingly, concentrations of K, Rb, Cs, and Li in the SuSu Knolls fluids that are higher than abundances typically observed in basalt-hosted mid-ocean ridge vent fluids is consistent with the presence of alkali-rich felsic crust at SuSu Knolls. Assuming Rb, Cs, and Li are not incorporated into secondary alteration phases and quantitatively partition into the aqueous phase during fluid-rock interaction, water/rock mass ratios can be calculated from the concentrations of these elements in vent fluids and unaltered lithosphere. Using mid-range values for the Li, Rb, and Cs concentrations in volcanic rocks near SuSu Knolls (5–6 ppm Li, 3–24 ppm Rb, 0.2–1.0 ppm Cs,
Sinton et al., 2003; Beier et al., 2015) water/rock mass ratios of 0.9–3.6 are indicated for SuSu Knolls smoker fluids (Fig. 5). It should be recognized that these ratios only record the amount of fresh rock encountered by high temperature fluids and represent maximum values due to the assumption of 100% extraction efficiency. The low water/rock mass ratios indicate that fluid-rock interactions in subsurface reaction zones at SuSu Knolls are occurring under rock-dominated conditions, as is the case in other back-arc and mid-ocean ridge hydrothermal environments. Rock-dominated conditions facilitate buffering the activity of solubility controlled aqueous species by aluminosilicate mineral assemblages during fluid-rock interaction in deep-seated reaction zones (Bowers and Taylor, 1985; Berndt et al., 1989; Seyfried et al., 1991).

In addition to fluid-rock interaction, the composition of ridge-crest hydrothermal fluids may be strongly influenced by processes such as phase separation, subsurface mixing with seawater, and entrainment of magmatic volatiles released by an active magma chamber. All of these processes appear to occur in both mid-ocean ridge and back-arc environments. The degree to which these processes influence fluid chemistry is highly variable owing to differences in numerous variables such as temperature, pressure, rock composition and texture, and subsurface hydrology. All of these processes influence in situ pH, a key variable in the aqueous transport and deposition of sulfide minerals, and therefore play a critical role in the formation of metal sulfide deposits at and below the seafloor.

5.1. Chloride variability

Phase separation has been identified as an important process that influences the chlorinity of ridge-crest hydrothermal fluids (Butterfield et al., 1994, 2003; Von Damm et al., 1997; Seewald et al., 2003). Aqueous Cl concentrations that are enriched or depleted relative to seawater are typically attributed to formation and segregation of brine and vapor phases during phase separation under sub- or supercritical conditions. All endmember Cl concentrations in the SuSu Knolls smoker fluids are equal to or enriched relative to concentrations in seawater (Table 1). Measured temperatures of 325 °C at the NS6 vent place these fluids near the two-phase boundary of seawater at a seafloor depth of 1183 m (Fig. 6; Bischoff and Rosenbauer, 1985), consistent with collection of replicate fluid samples that contain variable Cl concentrations indicative of ongoing phase separation during upflow (Table S1). Other fluids at SuSu Knolls have measured temperatures that are substantially below those required for phase separation at seafloor pressures (Fig. 6). The non-zero Mg concentrations for some of these fluids when they exit the seafloor indicate that subseafloor mixing with cool ambient seawater has lowered temperatures from conditions that may have resulted in phase separation prior to mixing. If it is assumed that heat capacity remains constant with temperature (a simplifying assumption that affects estimated temperatures by <10 °C) and the measured temperatures are extrapolated to 1.6 mmol/kg Mg (seawater Mg occupying the sampler dead volume does not affect measured temperatures), endmember temperatures for some of the North and South Su vents are close to values

Fig. 5. Estimated water/rock mass ratios for seawater-derived hydrothermal fluids from areas of venting at SuSu Knolls based on the aqueous concentrations of dissolved Cl, Li, Cs, and Rb.

Fig. 6. Measured temperatures versus dissolved Mg in seawater-derived hot-spring fluids from areas of hydrothermal venting at SuSu Knolls in 2006. The open star indicates the temperature and composition of seawater. The width of shaded gray lines indicate the range of temperatures for the two-phase boundary of seawater at the seafloor depths for areas of venting at SuSu Knolls based on the equation of state for seawater derived by Bischoff and Rosenbauer (1985).
required for phase separation at near-seafloor conditions (Fig. 6).

Although there is clear evidence for phase separation at SuSu Knolls, it may not be the only mechanism modifying the chlorinity of smoker fluids. Entrainment of volatiles degassed from silicic magmas could potentially enrich or deplete seawater-derived vent fluids depending on the Cl-content of the magmatic fluid. However, based on the relatively low Cl content of magmatic fluids likely responsible for the formation of the acid-sulfate fluids at North Su (Seewald et al., 2015), this does not appear to be a viable mechanism for producing the Cl-enriched smoker fluids at SuSu Knolls. Leaching of Cl from crustal rocks is typically not invoked as a fluid enrichment mechanism in mid-ocean ridge vent systems due to the very low concentrations of Cl in mid-ocean ridge basalts, but has been invoked for hydrothermal systems at Lau Basin due to higher Cl concentrations in back-arc basalts and more felsic rocks (Mottl et al., 2011). Rocks collected at the seafloor in the vicinity of SuSu Knolls contain 0.18–0.40 wt.% Cl (Sinton et al., 2003; Beier et al., 2015). If it is assumed that Cl is highly mobile during hydrothermal alteration and partitions quantitatively into the aqueous phase, water/rock mass ratios of 0.5–8.2 are indicated for the Cl enrichments. This implies that measured Cl concentrations are not invoked as a fluid enrichment mechanism in mid-ocean ridge vent systems due to the very low concentrations of Cl in mid-ocean ridge basalts, but has been invoked for hydrothermal systems at Lau Basin due to higher Cl concentrations in back-arc basalts and more felsic rocks (Mottl et al., 2011). Rocks collected at the seafloor in the vicinity of SuSu Knolls contain 0.18–0.40 wt.% Cl (Sinton et al., 2003; Beier et al., 2015). If it is assumed that Cl is highly mobile during hydrothermal alteration and partitions quantitatively into the aqueous phase, water/rock mass ratios of 0.5–8.2 are indicated for the Cl enrichments in SuSu Knolls vent fluids relative to seawater (Fig. 5). This range of values is generally consistent with water/rock mass ratios calculated based on alkali element concentrations and demonstrates that rock leaching is a viable mechanism to produce the observed Cl enrichments. It does not, however, preclude the possibility that phase separation has also influenced the chlorinity of the SuSu Knolls vent fluids.

Measured Cl concentrations in the actively phase separating NS6 fluids were above seawater values and showed substantial variability that reflects variable extents of phase segregation during sample collection. Observations of the temporal evolution of phase separated mid-ocean ridge hot-springs involve the initial venting of low-chlorinity vapors during active periods of phase separation followed by venting of Cl-rich residual brines stored in the crust as the system cools (Butterfield et al., 1997; Von Damm et al., 1997). Vventing of actively phase separating high-Cl fluids at NS6 is anomalous in the context of such a model, unless they were enriched in Cl relative to seawater prior to phase separation. Leaching of rock-derived Cl from felsic crust, as described above, can produce this Cl-enriched fluid. Such an interpretation would suggest that Cl-rich fluids venting at NS6 represent a vapor-phase produced by phase separation of a fluid containing even higher Cl concentration. This implies that measured Cl concentrations may not be a reliable indicator of phase separation in back-arc environments where the crust contains significant Cl concentrations, and should be used with caution to assess the temporal evolution of hydrothermal activity.

5.2. Sediment interaction

Endmember dissolved CH₄ concentrations in the SuSu knolls smoker fluids show a high degree of variability, ranging from 24–853 μmol/L (Table 1). A variety of processes may contribute CH₄ to submarine hot-spring fluids including abiotic sources, microbial activity, and thermogenic production during sediment interaction (Welhan, 1988; Von Damm et al., 1985b, 2005; Seewald et al., 1990, 1994; Cruse and Seewald, 2006; Proskurowski et al., 2008; McDermott et al., 2015). Magmatic volatiles venting in acid-sulfate fluids at North Su contain very low levels of CH₄ (Seewald et al., 2015) suggesting that CH₄ in nearby smoker fluids is not derived from active degassing of a sub-seafloor magma chamber.

High CH₄ concentrations in several SuSu Knolls fluids, along with its isotopic composition, suggest derivation from thermal alteration of organic-bearing sediments. Variations in dissolved CH₄ concentrations are accompanied by systematic variations in stable carbon isotope ratios, with CH₄ in the high concentration fluids being characterized by more depleted δ¹³C values relative to low concentration fluids (Fig. 7a). Hemipelagic sediments are abundant within a few hundred meters of the active hot-springs at SuSu Knolls (Hrischeva et al., 2007). The abundance and isotopic composition of CH₄ in the SuSu Knolls fluids can be accounted for by a model involving variable mixing of

Fig. 7. Plot of the carbon isotopic composition of methane (δ¹³CCH₄) versus 1/CH₄ concentration (a) and the C₁/C₂ molal ratio versus δ¹³CCH₄ (b) for methane and ethane in hydrothermal fluids at SuSu Knolls. The solid line in (a) represents a linear regression of the data and in (b) defines the trend for mixing of thermogenic hydrocarbons characterized by a δ¹³CCH₄ value of −36‰ and a C₁/C₂ of 121 with abiotic hydrocarbons characterized by a δ¹³CCH₄ value of −7‰ and a C₁/C₂ of 2000.
isotopically depleted CH$_4$ produced thermogenically during hydrothermal sediment alteration with a relatively small amount of isotopically enriched CH$_4$ produced abiotically from mantle derived CO$_2$ during hydrothermal circulation or by leaching from rock-hosted fluid inclusions (Kelley, 1996; Kelley and Früh-Green, 1999; McDermott et al., 2015; Wang et al., 2018). A plot of δ^{13}C$_{CH_4}$ values and 1/CH$_4$ concentration produces a linear trend with the y-intercept yielding a δ^{13}C$_{CH_4}$ value of -32% that defines the isotopic composition of the sedimentary endmember (Fig. 7a). Although the sedimentary endmember is more 13C enriched than CH$_4$ observed in other sediment-influenced spreading centers, where δ^{13}C$_{CH_4}$ values vary from -40 to $55\%e$ (Welhan and Lupton, 1987; Lilley et al., 1993; Cruse and Seewald, 2006, 2010), it is similar to values typically observed for thermogenic CH$_4$ in conventional petroleum producing sedimentary basins (Schoell, 1988; Whiticar, 1999). The enriched δ^{13}C$_{CH_4}$ values for sediment-derived CH$_4$ in the SuSu Knolls fluids may reflect the absence of microbial methanogenesis that has been invoked as a source for a portion of the sedimentary CH$_4$ entrained by vent fluids in other ridge-crest systems (Whiticar et al., 1994; Cruse and Seewald, 2006; Kawagucci et al., 2011).

Measured concentrations of aqueous ethane (C$_2$H$_6$)$_a$ also suggest hydrocarbon generation and entrainment in response to thermal alteration of sedimentary organic matter. The molar ratios of CH$_4$ to C$_2$H$_6$ (C$_1$/C$_2$) vary from 121 to 255 (Fig. 7b) and are consistent with relative hydrocarbon abundances from sediment covered spreading centers such as Guaymus Basin and Middle Valley (Welhan and Lupton, 1987; Cruse and Seewald, 2006). Moreover, C$_1$/C$_2$ molar ratios decrease systematically with decreasing values δ^{13}C$_{CH_4}$ (Fig. 7b), a trend consistent with mixing of a C$_2$-rich thermogenic gas with a CH$_4$-rich abiotic gas produced from magmatic CO$_2$. High temperature vent fluids from the nearby sediment-free PACMANUS hydrothermal contain abiotic CH$_4$ of likely abiotic origin (δ^{13}C$_{CH_4}$ values of -7 to $-15\%e$; Reeves et al., 2011), while the relative abundance of low molecular weight hydrocarbons in vent fluids from unsedimented spreading centers are characterized by C$_1$/C$_2$ molar ratios >2000 (McCollom and Seewald, 2007). Mixing thermogenic hydrocarbons characterized by a δ^{13}C$_{CH_4}$ value of $-36\%e$ and a C$_1$/C$_2$ of 121 (the lowest values observed at SuSu Knolls) with putative abiotic hydrocarbons characterized by a δ^{13}C$_{CH_4}$ value of $-7\%e$ and a C$_1$/C$_2$ of 2000 reproduces the systematic variation of C$_1$/C$_2$ with δ^{13}C$_{CH_4}$ observed in Fig. 7b.

Additional evidence for interaction of the SuSu Knolls smoker vent fluids with sediments is provided by the isotopic composition of dissolved ΣCO$_2$. Except for the fluids at South Su that are characterized by an average δ^{13}C$_{CO_2}$ value of $-1.6\%e$, the carbon isotope composition of dissolved ΣCO$_2$ in the North Su and Suzette fluids display a narrow range of δ^{13}C$_{CO_2}$ values that vary from -0.9 to $0.1\%e$. The carbon isotopic composition of ΣCO$_2$ at North Su and Suzette is indistinguishable from the expected isotopic composition of marine carbonate that is abundantly present in hemipelagic sediments at SuSu Knolls (Hrischeva et al., 2007). Accordingly, dissolved ΣCO$_2$ in smoker fluids at North Su and Suzette may be derived entirely from dissolution of sedimentary carbonate.

Based on the calcite contents of 11–50 wt.% reported by Hrischeva et al. (2007) and the endmember ΣCO$_2$ concentrations (Table 1), fluid/sediment mass ratios of 90 to 950 would be required to account for range of ΣCO$_2$ concentrations observed in the North Su and Suzette smoker fluids. The isotopic composition of magmatically-derived ΣCO$_2$ actively degassing in nearby acid-sulfate fluids at North Su has an 13C content of $-2.9\%e$ (Seewald et al., 2015), significantly more depleted than the isotopic composition of CO$_2$ in the North Su and Suzette fluids. Thus, the low concentration of dissolved CO$_2$ in conjunction with its isotopic composition suggests that magmatic degassing has not contributed large quantities of CO$_2$-rich volatiles to the chemistry of smoker fluids venting at North Su and Suzette.

A different model emerges for South Su vent fluids. They are characterized by a more depleted δ^{13}C$_{CO_2}$ value of $-1.6\%e$ and substantially higher endmember ΣCO$_2$ concentrations that vary from 142 to 153 mmol/kg fluid, suggesting addition of greater amounts of magmatic volatiles to the South Su fluids. Moreover, the low concentrations of CH$_4$ with a 13C-enriched isotopic signature ($-20\%e$) suggest that the extent of fluid-sediment interaction was substantially less at South Su than at North Su and Suzette, and represents a relatively minor source of CO$_2$. Although a δ^{13}C$_{CO_2}$ value of $-1.6\%e$ indicates ΣCO$_2$ that is slightly enriched in 13C relative to magmatic ΣCO$_2$ in acid-sulfate fluids at North Su ($-2.9\%e$; Seewald et al., 2015), it is consistent with magmatic ΣCO$_2$ in vent fluids from other back-arc environments where slab-derived CO$_2$ results in 13C-enriched CO$_2$ in the overlying mantle (Takai et al., 2008; Mottl et al., 2011; Reeves et al., 2011). Local variations in the isotopic composition of magmatic CO$_2$ between the individual vent fields at SuSu Knolls is not unexpected due to isotopic fractionation during magma degassing in the shallow crust (Javoy et al., 1978; Mattey, 1991; Pester et al., 2012). Collectively, the abundance and isotopic composition of dissolved CO$_2$ in the SuSu Knolls vent fluids point to locally variable contributions of magmatic volatiles to the chemistry of smoker-type fluids.

5.3. Sources of acidity

Despite numerous compositional similarities between vent fluids at mid-ocean and back-arc spreading centers, there are important differences that reflect geochemical processes unique to back-arc environments. In particular, several SuSu Knolls fluids are characterized by pH$_{H_2}SO_4$ values in the range of 2–3, significantly lower than the range of 3–4 typically observed for mid-ocean ridge vent fluids (Fig. 8). Similar pH$_{H_2}SO_4$ values have been observed in high temperature vent fluids from other back-arc environments such as Paua Ridge (PACMANUS vent field) and Lau Basin, and arc environments such as Brothers Volcano on the Kermadec Arc (Fouquet et al., 1993; Takai et al., 2008; de Ronde, 2011; Mottl et al., 2011; Reeves et al., 2011). Many of these highly acidic back-arc fluids are more enriched in sulfide forming metals such as Fe, Zn, Cu, and Pb than those venting at mid-ocean ridges (Fouquet et al., 2008; Seewald et al., 2012).
5.3.1. Magmatic volatiles

The high acidity and dissolved metal content of back-arc basin vent fluids has been used as evidence to support a contribution of SO$_2$-bearing magmatic volatiles to the chemistry of smoker fluids in arc and back-arc environments (de Ronde et al., 2005; Takai et al., 2008; Resing et al., 2007, 2009; Mottl et al., 2011; Reeves et al., 2011).

Magmatic SO$_2$ represents a substantial source of acidity because it partitions into aqueous fluids exsolved from SO$_2$-bearing magmas (Scaillet and Pichavant, 2003) and disproportionates upon cooling to temperatures below 400°C to produce reduced and oxidized sulfur species according to the reactions:

\[
4\text{SO}_2^{\text{(aq)}} + 4\text{H}_2\text{O} = \text{H}_2\text{S}^{\text{(aq)}} + 3\text{H}_2\text{SO}_4^{\text{(aq)}} \tag{1}
\]

\[
3\text{SO}_2^{\text{(aq)}} + 2\text{H}_2\text{O} = \text{S}^{\text{(s)}} + 2\text{H}_2\text{SO}_4^{\text{(aq)}} \tag{2}
\]

The relative importance of reactions (1) and (2) is strongly dependent on temperature, redox state, pH, and total sulfur (i.e. initial SO$_2$) present (Iwasaki and Ozawa, 1960; Holland, 1965; Drummond, 1981; Kusakabe et al., 2000; Seewald et al., 2015). Regardless of which reaction dominates, both produce acidity as H$_2$SO$_4$, which dissociates to HSO$_4^-$ and H$^+$. SO$_2$-bearing magmatic fluids also contain substantial quantities of HCl and HF, in addition to CO$_2$ and H$_2$O, which may also influence the acidity of back-arc vent fluids. Elevated concentrations of CO$_2$ and F support a significant contribution of magmatic volatiles to some of the smoker-type fluids at SuSu Knolls and fluids from other back-arc environments (Fouquet et al., 1993; Takai et al., 2008; Mottl et al., 2011; Reeves et al., 2011).

Evidence for the addition of a magmatic fluid to the SuSu Knolls vent fluids is provided by the hydrogen and oxygen isotopic composition of H$_2$O (Table 1). Mid-ocean ridge hydrothermal fluids contain H$_2$O that is typically characterized by small enrichments in the heavy isotopes of hydrogen and oxygen relative to seawater (Shanks et al., 1995; Shanks, 2001). In contrast, the SuSu Knolls smoker fluids show similar minor enrichments in 18O, but most samples are significantly depleted in D relative to seawater (Table 1). The range of oxygen and hydrogen isotopic compositions for H$_2$O in the SuSu Knolls smoker fluids is almost identical to that observed for smoker fluids at the nearby PACMANUS hydrothermal system (Reeves et al., 2011), suggesting similar contributions of magmatic H$_2$O. The isotopic composition of magmatic H$_2$O added to acid-sulfate fluids at SuSu Knolls (Seewald et al., 2015) has δ^D values from -26 to -31% and $\delta^{18}O$ from 6.5 to 8.3%, consistent with the composition of H$_2$O estimated for subduction-related volcanic vapors (Giggenbach, 1992; Hedenquist and Lowenstern, 1994). Isotopic mass balance constraints suggest that the SuSu Knolls and PACMANUS fluids may contain as much as 25 wt.% magmatic H$_2$O (Reeves et al., 2011), although substantially smaller contributions are possible due to the relatively large uncertainties associated with the hydrogen isotopic data used for the isotopic mass balance.
The potential impact of magmatic volatiles on the acidity of smoker type-fluids is readily apparent at the NS4 vent where fluids are characterized by a pH$_{25^\circ C}$ value of 1.5, substantially lower than the other smoker fluids at North Su (Table 1). The low pH of the NS4 fluids is accompanied by ΣSO$_4$ concentrations that are highly elevated relative to values expected for conservative mixing of a SO$_4$-free hydrothermal endmember and seawater (Fig. 4). The NS4 fluids contain similar concentrations of Na, K, mobile trace elements Li, Rb, and Cs, and Cl, and higher concentrations of ΣCO$_2$ and F relative to the other smoker fluids at North Su, suggesting that the elevated ΣSO$_4$ abundance reflects late stage addition of magmatic volatiles to a seawater-derived smoker-type fluid in the shallow subsurface. The net result is the formation of a hybrid fluid that has compositional features of nearby acid-sulfate fluids and convective seawater-derived smoker fluids. Due to absence of fresh Ca-bearing dacite in highly altered upflow zones, ΣSO$_4$ persists in solution due to the limited supply of aqueous Ca necessary for anhydrite precipitation in the SO$_4$-free hydrothermal endmember prior to mixing. Highly depleted Ca concentrations in the NS4 fluids relative to the other fluids and seawater (Table 1) indicate significant subsurface anhydrite precipitation induced by the addition of magmatic ΣSO$_4$.

Although disproportionation of magmatic SO$_2$ during mixing of a magmatic fluid with a seawater-derived hydrothermal fluid may produce substantial quantities of ΣSO$_4$, elevated concentrations will not be realized in high temperature fluids if an adequate source of Ca is available to remove SO$_4$ from solution by precipitation as anhydrite. Requisite Ca is readily available if the magmatic fluid is added to the convecting fluid prior to, or during, reaction with fresh crustal rocks under rock-dominated conditions. Except for NS4, the absence of elevated ΣSO$_4$ concentrations in Ca- and CO$_2$-rich endmember smoker-type fluids at SuSu Knolls suggests that entrainment occurs relatively early, prior to or during reaction with relatively unaltered rock at low water/rock mass ratio (Fig. 1).

Extensive fluid-rock interaction following addition of magmatic volatiles has the potential to substantially influence all aspects of vent fluid chemistry, especially pH. Numerous observations suggest that the acidity of SuSu Knolls and other relatively low pH smoker-type fluids from back-arc environments is extensively modified by fluid-rock reactions following entrainment of acidic volatiles. In particular, vent fluid acidity would be expected to correlate with endmember ΣCO$_2$ concentrations because, in general, CO$_2$ is abundant in magmatic fluids from the Eastern Manus volcanic zone (Reeves et al., 2011; Seewald et al., 2015) and, being relatively unreactive in discharging hydrothermal fluids, represents a conservative tracer of magmatic volatile input. Indeed, at the nearby PACMANUS hydrothermal system Reeves et al. (2011) documented decreasing values of δ^{34}S for dissolved H$_2$S with increasing ΣCO$_2$ concentrations that reflect a greater extent of H$_2$S production by SO$_2$ disproportionation in CO$_2$-rich fluids. A plot of felsic-hosted back-arc vent fluids, however, reveals the absence of a correlation between measured pH$_{25^\circ C}$ and endmember ΣCO$_2$ concentrations (Fig. 9), suggesting that the amount of entrained magmatic volatiles is not the primary control on pH in most fluids. The lack of correlation between magmatic volatile content and pH$_{25^\circ C}$ is readily apparent in the Suzette fluids. The SZ5 fluid is characterized by a highly acidic pH$_{25^\circ C}$ value of 2.3 relative to the other fluids that vary from 3.5 to 3.7, yet it contains an endmember ΣCO$_2$ concentration of 17.8 mmol/kg that is nearly identical to the ΣCO$_2$ abundances in the less acidic fluids (Fig. 4).

Compositional analysis of magmatic volatiles in acid-sulfate fluids at North Su and DESMOS indicate that the combined concentrations of magmatically derived H$_2$SO$_4$ and HCl exceed the abundance of CO$_2$ (Seewald et al., 2015). Accordingly endmember ΣCO$_2$ concentrations of 142 and 153 mmol/kg in the South Su smoker fluids would be accompanied by even greater concentrations of H$^+$ from the strong acids H$_2$SO$_4$ and HCl that would exceed the endmember ΣCO$_2$ concentrations and result in pH$_{25^\circ C}$ values less than 1, far below the measured values of 2.6 and 2.7. The absence of acidity contributed by magmatic volatiles suggests that it has been titrated by fluid-rock reactions.

5.3.2. Fluid-mineral equilibria

The lack of correlation between magmatic volatile content and pH suggests that the pH of SuSu Knolls vent fluids is buffered by fluid-mineral equilibria in subsurface reaction zones following the addition of magmatic volatiles. Plagioclase-epidote-amphibole mineral assemblages have been shown to play an important role in regulating the pH of basalt-hosted mid-ocean ridge fluids (Seyfried, 1987, 1991; Berndt et al., 1989). The significantly lower pH observed in many back-arc vent fluids suggests that different mineral assemblage(s) regulate fluid acidity. The existence of oceanic crust in back-arc environments that is extensively altered to illite-pyrophyllite-anhydrite ± alunite assemblages formed during alteration by highly acidic fluids (Binns et al., 2007) represents a key difference in the
mineralogy of subsurface upflow zones relative to mid-ocean ridge environments.

Phase relations in the system K₂O-Al₂O₃-SiO₂-H₂SO₄ can be used to assess the relationship between the composition of secondary mineral assemblages and fluid composition. Fig. 10 reveals that minerals such as pyrophyllite and K-alunite are stable at high H⁺ activity while K-feldspar and muscovite (used here as a proxy for illite due to the absence of thermodynamic data) are stable at lower H⁺ and high K⁺ activities. Direct observation of altered substrate at SuSu Knolls is limited to surface samples that contain crystalline, pyrite, native sulfur, kaolinite, and natroalunite/alunite (Binns et al., 1997; Yeats et al., 2014). Sediment gravity cores collected in the vicinity of the Suzette vent field also show the presence of alunite and clay minerals that are consistent with crustal alteration by highly acidic fluids (Hrischeva et al., 2007). Additional information on mineral assemblages likely to exist beneath the seafloor is available from the nearby PACMANUS hydrothermal system that was drilled during ODP Leg 193 (Binns et al., 2007) and is characterized by fluid chemistry that is similar to SuSu Knolls (Reeves et al., 2011). Two distinct mineral assemblages are present, one composed of chlorite-feldspar-quartz, consistent with formation during interaction of fresh rock with a fluid of relatively high pH, and the other composed of quartz-illite-pyrophyllite-a sodium phase ± alunite indicating formation from interaction with low-pH acid-sulfate-type fluids in upflow zones (Bach et al., 2003; Roberts et al., 2003; Binns et al., 2007).

To assess the influence of magmatic volatiles and fluid-mineral chemical interaction on fluid pH, we used the EQ3NR/EQ6 (v. 8.0) reaction path computer code (Wolery, 1992; Wolery and Daveler, 1992) to simulate the reaction of a convective seawater-derived vent fluid containing entrained magmatic volatiles with fresh dacitic rock. The EQ3NR/EQ6 modeling software calculates the equilibrium composition and aqueous speciation of fluids and mineralogy during incremental reaction of fluid and rock with specified initial compositions. For this application, the minerals andalusite, kyanite, andradite, sillimanite, boehmite, corundum, and diaspore were suppressed for all calculations because they are not observed in the hydrothermal systems of the Eastern Manus Basin. The supporting thermodynamic database was generated at 25 MPa using SUPCRT92 software (Johnson et al., 1992) that included thermodynamic data for minerals (Helgeson et al., 1978) and relevant aqueous inorganic species (Shock and Helgeson, 1988; Shock et al., 1989, 1997; Sverjensky et al., 1997). Thermodynamic properties for Al³⁺ and aqueous aluminum complexes in the SUPCRT92 database were updated with values from Tagirov and Schott (2001). Illite is a common alteration mineral in back-arc hydrothermal environments, but was not included in the thermodynamic model due to the absence of reliable thermodynamic data necessary to assess its stability. Therefore, we allowed muscovite to form as an approximation of illite stability, recognizing that it is not present in back-arc hydrothermal environments and may be characterized by different thermodynamic properties.

The starting fluid composition used for our geochemical model reflects the mixing of a moderately acidic (pH₁₂₀°C = 3.5) seawater-derived hydrothermal fluid with the magmatic component of the NS2 acid-sulfate fluid venting at North Su as reported by Seewald et al. (2015) (Table 2). It was assumed that the weight fractions of seawater-derived hydrothermal fluid and magmatic fluid were 0.8 and 0.2, respectively. A total of 1 kg fluid was incrementally reacted with 1 kg of dacite (final water/rock mass ratio = 1) at 325 °C and 250 bar. These conditions were chosen to represent high temperature fluid-rock interaction in deep-seated reaction zones at SuSu Knolls where seawater-derived Mg and SO₄ would have been previously removed by fluid-rock reactions during recharge. Prior to fluid-rock reaction, the mixed fluid is characterized by a pH₁₂₀°C of 1 and a dissolved SO₄ concentration of 89 mmol/l, reflecting the substantial contribution of acidity and ΣSO₄ from disproportionation of magmatic SO₂.

Fig. 11 illustrates the large changes in fluid chemistry that are predicted as a function of water/rock mass ratio. The in situ pH is highly acidic (~1.6) at water/rock mass ratios greater than 100 due to mass balance constraints that limit the capacity of the rock to buffer fluid chemistry. During this stage of reaction, quartz, Na-alunite, and anhydrite are the only minerals that form. As the fluid continues to react with increasing amounts of rock, decreasing water/rock mass ratios to values between 100 and 10, in situ pH increases sharply as acidity is titrated by mineral

Fig. 10. Activity diagram showing phase relations in the system K₂O-Al₂O₃-SiO₂-H₂SO₄ at 325 °C, 500 bar, quartz saturation, and an aqueous SO₄ activity of 10⁻². Muscovite is used in the diagram as a proxy for illite due to the absence of reliable thermodynamic data for illite. Thermodynamic data necessary for the construction of this diagram are from Helgeson et al. (1978) and Shock and Helgeson (1988).
dissolution. Increasing in situ pH at lower water/rock mass ratios is accompanied by the sequential formation of aluminosilicate minerals in addition to pyrite and hematite (Fig. 11).

At water/rock mass ratios between 30 and 35, in situ pH experiences an inflection (Fig. 11), reflecting the formation of muscovite (illite) and the buffering of in situ pH at a value of \(\mathrm{pH} \approx 3.5 \) by the assemblage pyrophyllite-muscovite (illite)-quartz according to the reaction:

\[
3\text{Al}_2\text{Si}_4\text{O}_{10} (\text{OH})_2 (s) + 2\text{K}^+ = 2\text{KAl}_3\text{Si}_3\text{O}_{10} (\text{OH})_2 (s) + 2\text{H}^+ + 6\text{SiO}_2 (s)
\]

An in situ pH of 3.5 corresponds to a measured pH of \(\mathrm{pH} \approx 2.7 \), similar to measured values for many smoker vent fluids in back-arc environments. Although the model reproduces the low pH of smoker fluids in back-arc environments, it fails to explain measured concentrations of several aqueous species in SuSu Knolls and Suzette fluids. In particular, at water/rock mass ratios of 30–35, the model predicts aqueous Ca concentrations below 1 mmolal due to its removal from solution by anhydrite precipitation. Such low Ca concentrations are inconsistent with the abundance of aqueous Ca in endmember smoker fluids at SuSu Knolls where concentrations vary from 21–51 mmol/kg. The low predicted Ca concentrations at water/rock mass ratios of 30–35 occur in response to increased SO\(_4^{2-}\) activity as HSO\(_4^-\) dissociates to H\(^+\) and SO\(_4^{2-}\) due to increased pH, which in turn greatly enhances the precipitation of anhydrite. Moreover, at water/rock ratios of 30–35, the reaction path model predicts elevated ZSO\(_4\) concentrations in excess of 6 mmolal, substantially greater than the natural fluids that contain near zero concentrations (Table 1, Fig. 4).

Ca-rich, ZSO\(_4\)-poor fluids are predicted by the model only at water/rock ratios less than \(\approx 13 \), when there is sufficient rock-derived Ca released to solution to remove dissolution. Increasing in situ pH at lower water/rock mass ratios is accompanied by the sequential formation of aluminosilicate minerals in addition to pyrite and hematite (Fig. 11).

At water/rock mass ratios between 30 and 35, in situ pH experiences an inflection (Fig. 11), reflecting the formation of muscovite (illite) and the buffering of in situ pH at a value of \(\mathrm{pH} \approx 3.5 \) by the assemblage pyrophyllite-muscovite (illite)-quartz according to the reaction:

\[
3\text{Al}_2\text{Si}_4\text{O}_{10} (\text{OH})_2 (s) + 2\text{K}^+ = 2\text{KAl}_3\text{Si}_3\text{O}_{10} (\text{OH})_2 (s) + 2\text{H}^+ + 6\text{SiO}_2 (s)
\]

An in situ pH of 3.5 corresponds to a measured pH of \(\mathrm{pH} \approx 2.7 \), similar to measured values for many smoker vent fluids in back-arc environments. Although the model reproduces the low pH of smoker fluids in back-arc environments, it fails to explain measured concentrations of several aqueous species in SuSu Knolls and Suzette fluids. In particular, at water/rock mass ratios of 30–35, the model predicts aqueous Ca concentrations below 1 mmolal due to its removal from solution by anhydrite precipitation. Such low Ca concentrations are inconsistent with the abundance of aqueous Ca in endmember smoker fluids at SuSu Knolls where concentrations vary from 21–51 mmol/kg. The low predicted Ca concentrations at water/rock mass ratios of 30–35 occur in response to increased SO\(_4^{2-}\) activity as HSO\(_4^-\) dissociates to H\(^+\) and SO\(_4^{2-}\) due to increased pH, which in turn greatly enhances the precipitation of anhydrite. Moreover, at water/rock ratios of 30–35, the reaction path model predicts elevated ZSO\(_4\) concentrations in excess of 6 mmolal, substantially greater than the natural fluids that contain near zero concentrations (Table 1, Fig. 4).

Ca-rich, ZSO\(_4\)-poor fluids are predicted by the model only at water/rock ratios less than \(\approx 13 \), when there is sufficient rock-derived Ca released to solution to remove
Moreover, the results suggest that smoker-type fluids with neutral model demonstrates the substantial capacity of unaltered rocks to buffer the pH of hydrothermal fluids at near neutral in situ values under rock-dominated conditions. Moreover, the results suggest that smoker-type fluids with a measured pH$_{25\degree C}$ below 3 are not the result of added magmatic volatiles during the reaction of seafloor-derived hydrothermal fluids with fresh dacite at low water/rock ratios.

An alternative model for the formation of lower pH smoker-type fluids in back-arc environments involves initial reaction of seawater-derived vent fluids with fresh crustal rocks under low water/rock mass ratios and subsequent reaction with rocks previously altered by acid-sulfate fluids in hydrothermal upflow zones above an active or preexisting magma chamber. Quartz-ilite-pyrophyllite-anhydrite ± alunite assemblages formed by acid-sulfate fluids will be in a state of disequilibrium during subsequent reaction with convective smoker-type fluid characterized by higher pH. Equilibrium at low water/rock ratio is attained by changes in fluid chemistry dictated by the mineralogy of the rocks owing to the substantially greater buffering capacity of minerals relative to aqueous fluids of near-seawater chlorinity on an equal mass basis. Therefore, equilibrium of smoker-type fluid compositions with quartz-ilite-pyrophyllite-anhydrite ± alunite assemblages formed at low pH will result in formation of low pH fluids until the buffering capacity of the mineral assemblage is exhausted.

The hydrothermal fluid compositions at SuSu Knolls provide compelling support for a model involving re-equilibration of smoker fluids with quartz-ilite-pyrophyllite-lime-anhydrite ± alunite assemblages during upflow. For example, all fluids sampled at Suzette are characterized by a very narrow range for the endmember abundances of Na, K, Rb, Cs, Li, Mn, ΣCO$_2$, and SiO$_2$ suggesting that they are derived from a common source fluid at depth that has entrained similar amounts of magmatic volatiles and interacted with fresh rock at low water/rock mass ratios (Table 1, Figs. 3 and 4). Endmember fluid from the SZ5 vent, however, is considerably more acidic (pH$_{25\degree C}$ = 2.2) than the other Suzette fluids (pH$_{25\degree C}$ = 3.5–3.7) and contains substantially higher concentrations of dissolved Fe, ΣH$_2$S, and Al. Although F is abundantly present in magmatic volatiles, its elevated concentration in the SZ5 fluids relative to the other Suzette fluids (Table 1) is not diagnostic of increased magmatic volatile input. Laboratory experiments and field observations have demonstrated that F is readily incorporated into hydrous secondary minerals and may be subsequently released to solution under changing temperature and pH conditions (Seyfried and Ding, 1995; Seewald et al., 2015), as is likely the case at SZ5.

The observed fluid chemistry at SZ5 is consistent with re-equilibration of the common source fluid with previously altered rock containing aluminosilicates and iron sulfides mineral assemblage that is devoid of mobile trace elements such as Cs, Rb, and Li. Comparison of the NS6 fluid characterized by a pH$_{25\degree C}$ of 2.8 to nearby smoker fluids NS3 and NS5 with pH$_{25\degree C}$ values between 3 and 4, shows a similar compositional relationship, suggesting that all the North Su fluids are derived from a common source fluid, but NS6 has reacted with previously altered rocks. The coexistence of high and low pH$_{25\degree C}$ fluids at Suzette and North Su implies that spatial heterogeneity in the alteration of crustal rocks in hydrothermal upflow zones allows some rock to form source fluids to reach the seafloor without encountering rocks previously altered by acid-sulfate fluids. Moreover, the model suggests that the lower pH$_{25\degree C}$ values of the SZ5 and NS6 fluids are an indirect result of previous episodes of magmatic degassing and fluid-rock interaction that altered the composition and mineralogy of the oceanic crust, and does not reflect the direct entrainment of magmatic volatiles.

The EQ3NR/EQ6 computer code was used to test the hypothesis that the low pH SZ5 fluids at Suzette reflect re-equilibration of a less acidic seawater derived hydrothermal fluid (pH$_{25\degree C}$ = 3.4) with rocks previously altered in hydrothermal upflow zones by acidic magmatic volatiles. For this model, the common source fluid was represented by the Mg- and ΣSO$_4$-free SZ1 fluid with an initial pH$_{25\degree C}$ of 3.7. The SZ1 fluid was incrementally reacted with a pyrophyllite-quartz-pyrite-alunite mineral assemblage at 272 °C (the inferred reaction zone temperature at SZ5 prior to mixing), 250 bar and a final water/rock mass ratio of 1 (Model #2, Table 2). Quartz and chalcedony formation were suppressed in the model to approximate aqueous SiO$_2$ concentrations in excess of quartz and chalcedony saturation as observed in the Suzette endmember fluids. The reaction path model produced a more acidic fluid characterized by a measured pH$_{25\degree C}$ of 2.0 (2.4 in situ) that was not substantially modified in terms of its major element composition (Table 2). The stable mineral assemblage after equilibration consists of pyrophyllite-cristobalite-pyrite-aluninite-anhydrite. The model results demonstrate that reaction of an evolved hydrothermal fluid with a pH$_{25\degree C}$ of 3.4 with a secondary assemblage containing pyrophyllite-quartz-pyrite-alunite-anhydrite produces a fluid that is similar to the SZ5 fluid in terms of its composition and pH$_{25\degree C}$.

The higher pH$_{25\degree C}$ of the NS6 fluids (2.8) relative to SZ5 fluids (2.2) suggests buffering by a different secondary alteration assemblage that does not contain alunite (see Fig. 10). Reaction of an evolved moderately acidic common source fluid represented by the NS3 vent fluid (pH$_{25\degree C}$ = 3.4) with a mineral assemblage containing pyrophyllite-quartz-pyrite mineral solution at 325 °C, 250 bar and a final water/rock mass ratio of 1, produced a mineral assemblage consisting of pyrophyllite-quartz-pyrite-muscovite(illite)-anhydrite and reproduced the NS6 fluid composition (Model #3, Table 2). Similar fluid temperatures, pH$_{25\degree C}$, and chemistry at South Su suggest that the same mineral assemblage may buffer fluid composition during upflow.

Collectively, results of the thermodynamic models demonstrate that low pH$_{25\degree C}$ values observed in many smoker fluids venting at the seafloor in back-arc environments do not reflect the direct addition of acidity by magmatic volatiles during convective circulation. Instead, the venting of low pH$_{25\degree C}$ smoker fluids may be the result of chemical
re-equilibration with rocks altered previously by magmatic volatiles in hydrothermal upflow zones. Prior episodes of hydrothermal activity involving fumarolic venting of acid-sulfate fluids formed by the mixing of magmatic volatiles with seawater in subsurface environments (Seewald et al., 2015) are likely responsible for the formation of pyrophyllite and alunite-bearing mineral assemblages in hydrothermal upflow zones. Thus, the acidity of magmatic volatiles may be "stored" in the oceanic crust through the creation of acid-sulfate mineral assemblages and subsequently released to seawater-derived smoker fluids that recoup permeable flow paths.

The reaction path models used to reproduce the SZ5 and NS6 fluid compositions demonstrated that the fluids equilibrate at water/rock mass ratios of 6 and 200, respectively, and did not undergo significant compositional change with continued reaction to the final water/rock ratio of 1. Constant fluid composition over this broad range of water/rock ratios demonstrates the high capacity of minerals to buffer fluid chemistry in subsurface environments. The ability of secondary alteration assemblages to lower the pH of smoker-type fluids at values below 3 will ultimately depend on the time integrated water/rock mass ratios in upflow zones. Because the pH buffering capacity in hydrothermal upflow zones will be exhausted at sufficiently high water/rock ratios, the lowering of pH25°C to values between 2 and 3 during upflow is likely a transient phenomenon.

5.4. Metal remobilization

The chemical interaction of previously altered regions of the oceanic lithosphere with smoker-type vent fluids during upflow has important implications for the mobilization of sulfide-forming metals in subsurface environments. Interaction of a seawater-derived smoker fluids with quartz-illite-pyrophyllite-anhydrite ± alunite assemblages substantially increases acidity and the solubility of metal-bearing minerals, leading to dissolution in the upflow zone. Because Fe and Al have high concentrations in unaltered crustal rocks and are relatively immobile, they may persist in highly altered hydrothermal upflow zones, and contribute to vent fluid chemistry. For metals present in trace quantities, however, extensive alteration may rapidly exhaust the reservoir initially available in unaltered rock.

Some data suggest that acidic magmatic fluids released from shallow magma chambers may contain high levels of magma-derived metals that contribute to the formation of seawater mineral deposits (Yang and Scott, 1996, 2002, 2006; Heinrich, 2007; Heinrich and Candelia, 2014). These same magmatic fluids are responsible for altering volcanic rocks to acid-sulfate mineral assemblages that may subsequently be responsible for the acidification of smoker fluids during upflow. Reaction of acidic magmatic volatiles with fresh crustal rocks will result in the titration of acidity and increased in situ pH. Increasing pH during rock alteration may induce precipitation of Fe, Cu, Zn, and Pb sulfide minerals in upflow zones which may be remobilized during subsequent acidification of seawater-derived smoker fluids during reaction with acid-sulfate mineral assemblages.

Evidence for metal mobilization during acidification of smoker fluids at SuSu Knolls is provided by the relative abundances of dissolved Fe and Mn, which typically show similar responses to variations in H+ activity in terms of their aqueous solubility (Seyfried, 1987; Seewald and Seyfried, 1990). Unaltered crustal rocks at SuSu Knolls contain <0.2 wt.% MnO while FeO total values are as high as 7.25 wt.% (Beier et al., 2015). Due to the substantially lower abundance of Mn, it is expected that crustal rocks extensively altered by interaction with highly acidic magmatic fluids will be rapidly depleted in Mn, but contain substantial quantities of Fe. Due to the substantially greater abundance of Fe over Mn, observed systematic increases in Fe/Mn molal ratios with decreasing pH25°C within a given vent field at SuSu Knolls (Fig. 12) are consistent with extensive mobilization of Fe, but not Mn, during acidifica-
tion of smoker fluids in upflow zones.

Because hydrothermal upflow zones previously altered by magmatic fluids may be highly enriched in magmatically-derived metals such as Cu, Zn, and Pb, smoker fluids may mobilize these metals by the same acidification process that produced elevated Fe concentrations. Thus, a portion of the dissolved metals present in black-smoker fluids may ultimately be derived from magmatic fluids, but require seawater-derived hydrothermal fluids for delivery to the seafloor.

6. SUMMARY AND CONCLUSIONS

The composition of seawater-derived hydrothermal fluids venting at the SuSu Knolls back-arc extensional environment indicates formation via a series of sequential fluid-rock reactions during convective circulation through the oceanic lithosphere. The chemistry of seawater is extensively modified during high temperature fluid-rock reactions at low water/rock mass ratios in deep-seated reaction zones to produce a moderately acidic fluid that is similar in composition to vent fluids observed at mid-ocean ridges (pH25°C ≈ 3–4). The composition of smoker fluids venting in back-arc environments, however, is characterized by a wider range of pH25°C that includes substantially more acidic values.
Equilibrium thermodynamic models demonstrate that mixing of magmatic fluids exsolved from active magma chambers may contribute acidic volatile species to back-arc smoker vent fluids, but cannot represent the source of acidity responsible for their lower pH$_{25^\circ C}$ if the magmatic fluids are added prior to or during reaction with fresh crustal rocks. We postulate that higher acidity of some back-arc smoker vent fluids (pH$_{25^\circ C}$ \approx 2–3) reflects reaction in regions of the oceanic crust that have been previously altered by highly acidic magmatic fluids to an assemblage containing quartz-illite-pyrophyllite-anhydrite \pm alunite. Chemical equilibration of seawater-derived smoker fluids with these highly altered assemblages generates substantial acidity that lowers pH and may result in the aqueous remobilization of magmatically-derived metals from hydrothermal upflow zones. At the seafloor, precipitation as sulfide minerals upon mixing with cold alkaline seawater may result in the formation of seafloor massive sulfide deposits. Such a model implies that the high acidity and metals released during the exsolution of magmatic fluids from silicic magmas may be stored in the oceanic crust and subsequently harvested at high-temperature fluids. While the high acidity of subseaferal fluids may be substantially enriched relative to seawater by leaching of CI from felsic rocks, vapor phases produced during phase separation may be characterized by aqueous CI concentrations in excess of seawater values. Hydrothermal interaction with hemipelagic sediments that are abundantly present at SuSu Knolls contributes significant quantities of thermogenically produced carbon species such as CH$_4$ to smoker vent fluids. Elevated Mg concentrations in many samples along with non-conservative behavior of SO$_4$ in response to anhydrite precipitation, provides evidence for subseaferal mixing of high temperature Mg- and SO$_4$-free endmember fluids with cold Mg- and SO$_4$-rich seawater.

Fumarolic venting of magmatic fluids in proximity to hydrothermal activity involving the convective circulation of seawater-derived smoker fluids at SuSu Knolls represents a powerful opportunity to constrain chemical and physical processes that regulate the composition of hydrothermal fluids in back-arc environments. Our results demonstrate that silicic magma chambers play a fundamental role in regulating vent fluid chemistry. Much of the compositional variability exhibited by hydrothermal fluids in back-arc environments reflects past or ongoing degassing of highly acidic magmatic volatiles. A deep understanding of these processes will play a fundamental role in the development of models to describe the impact of hydrothermal activity in arc and back-arc environments on the formation of seafloor massive sulfide deposits and global geochemical fluxes associated with subduction.

ACKNOWLEDGEMENTS

We thank the Jason group and the crew of the RV Melville for their expertise, assistance, and dedication that contributed to a very successful field program. The authors are very grateful to Janis Thal for assistance in generating the composite bathymetric map of the SuSu Knolls complex. This study received financial support from NSF Grant OCE-0327448, the WHOI Deep Ocean Exploration Institute Graduate Fellowship to E.P. Reeves, the Ocean Drilling Program Schlanger Fellowship to P.R. Craddock and a fellowship from the Hanse-Wissenschaftskolleg to J.S. Seewald.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gca.2019.03.034.

REFERENCES

Gena K., Mizuta T., Ishiyama D. and Urabe T. (2001) Acid-sulfate type alteration and mineralization in the DESMOS

Associate editor: Jun-ichiro Ishibashi